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NumerollS formulae. vegetation indices. have been developed to reduce multispectral scanner (MSS) data to a single
number for assessing vegetation charactel;stics such as species, leaf area, stress, and biomass. Part I of this report gives
the history and fonnulae of some four dozen vegetation indices. Studies investigating the empirical relationships among
vegetation indices are summarized. Part II of this report develops the idea of two vegetation indices being functionally
equivalent: Two vegetation indices are taken to be equivalent for making a set of decisions, if the decisions made on the
basis of one index could have been equally well made on the basis of the other index. The utility of these ideas is
explored in the context of alarm models and graphical displays. Several ,,;dely used indices are shown to be equivalent.

Introduction

The aim of science is to
seek the simplest explana-
tion of complex facts. We
are apt to fall into the
error of thinking that the
facts are simple because
simplicity is the goal of
our quest. The guiding
motto in the life of every
natural philosopher should
be, "Seek simplicity and
distrust it,"
Alfred North Whitehead

Current and accurate information on a
global basis regarding the extent and con-
dition of the world's major food and fiber
crops is important in today's complex
world. Traditional sampling techniques for
estimating crop conditions, based on field
collection of data, are time-consuming,
costly, and not generally applicable to
foreign regions. An alternate approach is
remote sensing. A series of earth observa-
tion satellites (Landsats) have provided a

potential way to monitor worldwide crop
conditions (MacDonald and Hall, 1980).
The sensor system onboard the Landsats,
the multispectral scanner (MSS), mea-
sures the reflectance of the scene in four
wavelength intervals (channels) in the
visible and near-infrared portions of the
spectrum. The spectral measurements are
influenced by the vegetation characteris-
tics, soil background, and atmospheric
condition.

Investigators have developed tech-
niques for qualitatively and quantitatively
assessing the vegetative canopy from
spectral measurements. The objective has
been to reduce the four channels of MSS
data to a single number for predicting or
assessing such canopy characteristics as
leaf area, biomass, and percent ground
cover.

This paper summarizes and references
the origin, derivation, and motivation for
some four dozen of these formulae which
are referred to as vegetation indices (VIs).
Part II develops the idea of two VIs being
functionally equivalent for decision mak-
ing. The meaning and utility of VIs
equivalence is demonstrated in a se-
quence of real and hypothetical examples.
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combinations and exploit differences in
the reflectance patterns of green vege-
tation and other objects as summarized in
Fig. 1.

The digital counts (DCs) from the indi-
vidual MSS channels (CH4, CH5, CH6,
CH7) have been used to estimate percent
ground cover and vegetative biomass
(Wiegand et al., 1974 and Seevers et al.,
1973). The correlation coefficients re-
ported ranged from 0.30 for CH7 with
crop cover to 0.88 for CH6 with leaf area
index. Similar correlations were reported
by Tucker (1979).

Ratios of the MSS DCs have been used
to estimate and monitor green biomass,
etc. (Rouse et al., 1973; 1974; Cameggie
et al., 1974; Johnson, 1976, and Maxwell,
1976). The coefficients of determinations
were slightly higher than those for the
corresponding channel differences. The
12 pairwise ratios (six of which are in-
verses of the other six) will be denoted by
R45 = CH4jCH5, R46 = CH4jCH6, etc.
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Development of Vegetation Indices

Idealized reflectance patterns for
herbaceous vegetation and soil are com-
pared in Fig. 1. Dead or dormant vege-
tation has higher reflectance than living
vegetation in the visible spectrum and
lower reflectance in the near-infrared. Soil
has higher reflectance than green vege-
tation and lower reflectance than dead
vegetation in the visible, whereas, in the
near-infrared, soil typically has lower re-
flectance than green and dead vegetation
(Tappan, 1980). Jackson et al. (1980),
Tucker and Miller (1977), and Deering et
al. (1975) provide an extensive discussion
of reflectance properties.

Numerous vegetation indices have been
used to make quantitative estimates of
leaf area index, percent ground cover,
plant height, biomass, plant population,
and other parameters (Pearson and Miller,
1972 and Wiegand et al., 1974). Most
formulae are based on ratios or linear
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FIGURE 1. Idealized reflectance patterns of herbaceous vegetation and soil from 0.4
to 1.1. mill (Deering et al.. 1975).
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Rouse et al. (1973) proposed using the
normalized difference of DCs from CH7
and CH5 for monitoring vegetation, which
will be referred to as ND7. Deering et aI.
(1975) added 0.5 to ND7 to avoid nega-
tive values and took the square root of the
result to stabilize the variance, This index
is referred to as the transformed vege-
tation index and will be denoted by TVI7,
Similar formulae using CH6 and CH5
were proposed:

ND6 = (CH6 - CH5)/(CH6+CH5),

ND7 = (CH7 - CH5)/(CH7 + CH5),

TVI6 = (ND6+ 0.5)1/2,

TVI7 = (ND7 + 0,5)1/2,

Our experience has been that the addi-
tion of 0.5 does not eliminate all negative
values. We suggest the following compu-
tational1y correct formulae:

TVI6 = (ND6+0.5)/ABS(ND6+0.5)

X [ABS(ND6+0.5)] 1/2,

TVI7 = (ND7 + 0.5)/ ABS(ND7 + 0.5)

x [ABS(ND7 +0.5)] 1/2,

where ABS denotes absolute value and
0/0 is set equal 1. In Example 1, it is
shown that these formulae are equivalent
for decision making to the basic ratios
R65 and R75, Therefore, their use can
only be justified if either they improve
the regression fit or they normalize the
regression errors (Draper and Smith,
1966).

Kauth and Thomas (1976) used the
technique of sequential orthogonalization
underlying the Gram-Schmidt process to
produce an orthogonal transformation of

the original Landsat data space to a new
four-dimensional space. They called it the
"Tasseled Cap" transformation and
named the four new axes brightness (soil
blightness index, 8BI), greenness (green
vegetative Index, GVI), yellow stuff (YVI),
and nonsuch (NSI). The names attached
to the new axes indicate the characteris-
tics the indices were intended to measure.
The coefficients in the following formulae
are taken from Kauth et al (1978):

SBI = 0.332CH4+0.603CH5
+ 0,675 CH6 + 0,262 CH7 ,

GVI = - 0.283CH4 - 0.660CH5
+ 0.577 CH6 + 0.388 CH7 ,

YVI = - 0.899CH4+0.428CH5
+0.076CH6 - 0.041CH7,

NSI = - 0.016CH4+0.131CH5
- 0.452CH6+0.882CH7.

Wheeler et aI. (1976) and Misra et aI.
(1977) applied principal component anal-
ysis to MSS DC data. The structure of the
resulting transformation and the interpre-
tation of the principal components are
similar to those for the Kauth-Thomas
transformation:

MSBI = 0.406CH4 + 0.600CH5
+ 0.645 CH6 + 0.243 CH7,

MGVI = - 0.386CH4 - 0.530CH5
+ 0.535CH6 + 0.532CH7,

MYVI = 0.723CH4 - 0.597CH5
+0.206CH6 - 0.278CH7,

MNSI = 0.404CH4 - 0.039CH5
- 0.505CH6+0.762CH7,

The similarity of the Kauth-Thomas
and Wheeler- Misra results is remarkable
in light of the fact that the ideas and
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PVl6 = (1.091CH6 - CH5 - 5.49)

/(1.0912 + 12)1/2,

PVI7 = (2.4CH7 - CH5 - 0.01)

/(2.42 + 12)1/2.

PVl6 = (( - 2.507 - 0.457CH5

+ 0.498CH6)2
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posed:

PVl7 = [(0.355CH7 - 0.149CH5)2

+ (0.355CH5 - 0.852CH7)2] 1/2,

PVl6 = [( - 0.498 - 0.457CH5

+0.498CH6)2

+ (2.734 +0.498CH5

_ 0.543 CH6)2]1/2.
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Evidently a minor error was made in
the derivation of PVI6. The formula for
PVI6 should be:

These formulae are computationally in-
efficient and do not distinguish right from
left of the soil line (water from green
stuff). The standard formula from analytic
geometry for the perpendicular distance
from a point to a line solves this difficulty
(Salas and Hille, (1978):

'-:'.'--.- ".' - -.- -' ~,'.

SSBI = 0.437CH4+0.564CH5
+0.661 CH6+0.233CH7,

SGVI = - 0.437CH4 - 0.564CH5
+0.661CH6+0.233CH7,

SYVI= - 0.437CH4+0.564CH5
- 0.661CH6+0.233CH7,

SNSI = - 0.437CH4+0.564CH5
+0.661CH6 - 0.233CH7.

Richardson and Wiegand (1977) used
the perpendicular distance to the "soil
line" as an indicator of plant develop-
ment. The "soil line," a two-dimensional
analogue of the Kauth-Thomas SBI, was
estimated by linear regression. Two per-
pendicular vegetation indices were pro-

techniques underlying the two processes
are quite different. With principal com-
ponent analysis the experimenter imposes
no prior order or physical interpretation
on the principal directions. Principal
component analysis is in effect a succes-
sive factorization of the total variation in
the data into mutually orthogonal compo-
nents, the order being established by the
successive directions of maximum varia-
tion. Gram-Schmidt orthogonalization,
however, gives the experimenter the free-
dom to indirectly establish a physical in-
terpretation by choosing the order in
which the calculations are performed.

Misra et al. (1977) proposed another
linear transform, based on the idea of
spectral brightness and contrast. Gener-
alizations of spectral brightness and con-
trast were defined in spectral density
space, and then transformed back to count
space. The first two components of the
resulting transformation are similar to the
first two components of the two preced-
ing transformations:



EQUIVALENCE OF SPECTRAL VEGETATION INDICES

... , ..... - ..........•... , .••. - .. - ' .. -.- .~- .. '"~.~"'- .-' .- ~".,- ,-.' , . .' ':. .,. \ ....:. ':.-.-'" ~-" .. ' --:.- .. ~,~.:- .

The difference vegetation index (DVI),
suggested by Richardson and Wiegand
(1977) as computationally easier than
PVI7, is essentially a resealing of PVI7:

DVI = 2.4CH7 - CH5.

The Ashburn vegetation index
(Ashburn, 1978) was suggested as a mea-
sure of green growing vegetation. The
doubling of CH7 is to make the scale
compatible: CH7 is 6-bit data and has
one-half the range of the other three
bands, which are 8-bit data:

AVI = 2.0CH7 - CH5.

Hay et al. (1979) proposed a vegetation
indicator called greenness above bare soil
(GRABS). This was an attempt to de-
velop an indicator for which a threshold
value could be specified for detecting
green vegetation. The calculations were
made using the Kauth- Thomas tassel cap
transformation applied to sun-angle and
haze-corrected data. The resulting index
is quite similar to the GVI, since the
contribution of SBI is less than 10% of
GVI:

GRABS = GVI - 0.09178SBI + 5.58959.

Kanemasu et al. (1977) regressed winter
wheat leaf area measurements of MSS
band ratios and produced the following
regression equation:

ELAI = 2.68 - 3.69R45 - 2.31R46

+2.88R47

+ 0.43 R56 - 1.35R57

+ 3.07[R45 - (0.5R47)(R45)].

Pollack and Kanemasu (1979) later used
a larger data set plus stepwise regression
and obtained another regression equation.

CLAI = 0.366 - 2.265 R46
- 0.431(R45 - R47)(R45)

+ 1.745R45+0.57PVI7.

Separate regression equations were also
obtained for CLAI values above and be-
low 0.5:

LAI = 1.903 - 1.138R56
- 0.071(R45 - R47)R45

- 0.016PVI6,

if CLAI is less than 0.5,
LAI = - 5.33 +0.036PVI7 +6.54TVI6,

if CLAI is greater than 0.5.
Thompson and Wehmanen (1979) pro-

posed a technique utilizing transformed
DC data for detection of agricultural
vegetation undergoing moisture stress.
The MSS data are rotated into the
Kauth- Thomas vectors (GVI, SBI,
YSI,NSI) to screen out clouds, water, bare
soil, etc. Each vector is evaluated and any
vector having values considered unrea-
sonable for agricultural data is discarded.
The remaining pixels are considered the
good pixels. 1% of the pixels with the
lowest GVI values are then discarded.
The lowest GVI value remaining becomes
the soil line. A green number is then
computed for each pixel by subtracting
the soil line from GVI. The green index
number (GIN) is then an estimate of the
percentage of pixels in the scene with a
green number greater than or equal to 15:

number of pixels with
GIN = a green number of 15+ X 100.

number of good pixels
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An Equivalence Relation
for Spectral Vegetation Indices

based on CH5 and CH7, which included
AVI, PVI7, R75, TVI7, and ND7. The
other large group contained VIs, based on
CH5 and CH6, and a few VIs involving
three or all four channels, which included
GRABS, CLAI, R65, TVI6, ND6, GVI,
MGVI, PVI6, and SGVI. The VIs within
these two groups had absolute simple cor-
relations greater than 0.90, with most
greater than 0.95. The elements of these
two large groups were correlated at 0.8 or
higher. Three smaller groups readily ap-
parent were: (NSI,R76), (R64,R74), and
(SBI,MSBI,SSBI,SNSI).

In this section, a definition of VI equiv-
alence is developed. The utility of this
definition is demonstrated by examples in
the context of alarm models and graphical
display. Vegetation indices are functions
which associate a real number to each
four-dimensional MSS DC vector,
(CH4, CH5, CH6, CH7). To give a precise
statement of vegetation index equivalence
it is convenient to employ standard func-
tion notation: f: 81---)$2 denotes a func-
tion from the set 81 into the set 82; f(X),
the value of f at the point (X) of 81;
Dom(f), the domain of f; Ran(f), the
range of f; and f- 1: 82 ---) 81, the inverse
of f when it exists. The inverse exists if,
and only if, f is one-to-one and onto. The
composition of two functions has an in-
verse if, and only if, both functions have
inverses, in which case (fo g)-1 =

g- 1 0 f- 1. The reader unfamiliar with this
notation may wish to study Figs. 2-5
before proceeding to the formal presenta-
tion that follows. A short explanation of
the function notation is given in the Ap-
pendix.

Empirical Relationships
among Vegetative Indices

Richardson and Wiegand (1977) corre-
lated eight VIs (GVI, DVI, SBI, PVI6,
PVI7, TVI6, TVI7, and R57) with four
plant component variables (crop cover,
shadow cover, plant height, and leaf area
index). The correlation coefficients ob-
tained by plant component with the VIs
(excluding SBI) were very similar. Later,
Wiegand et aI. (1979) correlated leaf area
indices for winter wheat fields to five VIs
(TVI7, TVI6, PVI7, PVI6, and GVI). The
correlation coefficients within and among
fields were similar.

Aaronson et aI. (1979) studied the simi-
larities and differences among several VIs
(AVI, DVI, GVI, PVI7, TVI7, and KVI).
The obtained correlation coefficients
ranged from 0.8 to 1.0 and were stable
from spring greenup to harvest. Aaronson
and Davis (1979) later used a large data
set, which included vegetation measure-
ments and several VIs, to study interrela-
tionships. The VIs (AVI, DVI, GVI, KVI,
PVI6, PVI7, TVI6, and TVI7) were corre-
lated against each other and against vege-
tation measures such as plant height from
tillering through harvest. The correlation
coefficients between the VIs ranged from
0.81 to 1.00, and those between VIs and
vegetation measures mostly cluster around
0.7.

Lautenschlager and Perry (1981)
studied the empirical relationships among
the VIs listed in the above section using
cluster analysis. The absolute value of the
bivariate correlations was used as the
measure of distance between VIs, and
the average distance between elements
was used as the between-duster distance.
This procedure separated the VIs into
two large groups plus a number of small
groups. One large group contained VIs
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EQUIVALENCE OF SPECTRAL VEGETATION INDICES
1

It might seem that VI equivalence
should correspond to function equality;
i.e., VI = V2 if, and only if, VI( X) = V2( X)
for each MSS DC vector X. However, this
requirement is too restrictive because it
requires that both VIs have the same
graph and ignores the decisions made on
the basis of the VI values. Since vegeta-
tion indices are formulae used in making
decisions about crop characteristics and
conditions, it is appropriate to say that
two VIs are equivalent if, and only if, the
same decision results regardless of the VI
employed. This means that two VIs, VI
and V2, are equivalent for making the set
of decisions D if, and only if, for every
decision rule dl: Ran(VI) --)D, there cor-
responds a decision rule d2: Ran(V2) --) D
such that the decision, based on d2 and
V2, is the same as the decision based on
d I and VI for all MSS DC vectors X; that
is, dl(VI(X)) = d2(V2(X)) for each X. It is
easy to see that two vegetation indices, VI
and V2, are equivalent if, and only if,
there exists a one-to-one onto function T:
Ran(VI) ~ Ran(V2) such that To VI = V2•

Thus the same decision results regardless
of the VI used; that is,

V
I
- I [T- I(d )] = (T 0 VI ) - I(d) = V

2
- I(d )

(1)

for each decision din D, where the super-
script - 1 indicates the inverse image of
d under the given function. The relation-
ship defined is an equivalence relation on
the set of vegetation indices; that is,

(i) Each VI is equivalent to itself: re-
flexive property.

(ii) If VI is equivalent to V2, then V2 is
equivalent to VI: symmetric prop-
erty.

(iii) If VI is equivalent to V2 and V2 is
equivalent to Y:'J' then VI is equiva-
lent to V3: transitive property.

Many tedious computations are avoided
by using these properties.

A number of studies have investigated
the transfonned vegetation indices TVI6
and TVI7 and the corresponding ratios
R65 and R75 as predictors of biomass,
leaf area, plant height, and percent cover.
The predictive ability of TVI6 and R65 or
TVI7 and R75 are similar as evidence by
the estimated correlation coefficient. We
now show that the transformed vegeta-
tion index and its generalizations are
equivalent to the corresponding ratios.
The sequence of examples that follows
will make clear not only the algebraic and
geometric meanings of VI equivalence but
also demonstrate the utility and ap-
propliateness of this definition.

Example 1

Let a and b be positive constants, and
define the functions f, g, and T by

f(X5, X7) = (aX7 - bX",)/(aX7 + bX.s),

g(X5, X7) = X7/X.5'

T(y) = (b/a)[(I + y)/(l- y)]

for X5 and X7 positive and ABS( y) less
than one. Observe that T is invertible; in
fact,

T - I(Z ) = (az - b )/ (az + b )

for z positive.
Thus, f and g are equivalent and the
values of f can be computed from the
values of g and vice versa:

(T 0 f)(X.5' X7) = g(X,5' X7),

(r- log) (X.s' X 7) = f( X.5' X 7)'

The relationship between ND7 and R75
is illustrated in Fig. 2. The important
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(HoG 0 T- log) ( X S' X 7 )

=(f(XS,X7)+k)

X [ ABS (f( Xs, X 7) + k )] p - 1.

(H 0 G 0 T-1 )R75 = TVI7.

Another way to view VI equivalence is
that equivalent VIs divide the DC space
into the same set of equivalence classes.
This interpretation is illustrated graphi-
cally in Fig. 3.
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by
G(v)=v+k,

H( w) = w(ABS( w)] p-1

for w between k -1 and k + 1, L = (k-
1)[ABS(k-1)]p-l, U=(k + l)[ABS(k +
1)]p - 1, for ABS(v) < 1 and 0/0 defined
as 1. It is easy to verify that G and Hare
one-to-one and onto and that

Taking k = p = 1/2 and a = b = 1 yields
a one-to-one function between TVI7 and
R75:

N07

OUTPUT

I

0.1~

~ 0·~1
( 'D~J

'Oj~

84a ~~&4
Il8 \l8 ~ l~

CH5 CH1

R75 • 3
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DUTPUT
I

ND? • 1/2
I

EXACTLY THE SAt'l NUIIER II-r-
N07 • 1/2

\
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mUT - • (LET CNS • I AND CH? • 241

FIGURE 2. The equivalence of vegetation in-
dices means the value of one index can be
computed from the value of the other index. The
flow chart outlines the computation of ND7
from R75.

point is: Knowing the value of one index
is equivalent to knowing the value of the
other index-the indices are therefore
equivalent for decision making.

The equivalence of TVI7 and R75 is
shown as follows: Let k and p be real, and
define the functions G: (- 1, 1) ~ (k -
1,k+1) and H: (k-1,k+1)~(L,U)

~:-:-----:-'";::-"-C'~O-"__'~"~- ...~.-,.--. ----.- ---:.c;---.. ;~:---~;,.:---_:_---.,_~--.;..o~_-: _.--:-.. _.~ .. ,.·~,<-_;,-:_:;:--,-",:-,".-"",c,-c""w-~,,-<-or----'.,o-"-o~';:.,-'.0.",.-. __._.. -.-.-. -----
-. "'-, - ~'. :,:,;- ...•. -', .•. -'

FIGURES 3(a), 3(b). and 3(c). The response surfaces of R7.5, ND7, and TVI7 determine the same equivalence classes
-the set of lines emanating from the origin in the two--<limensionalDC space.
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ND7

-1VI7
B=(A-1 )/(A+ 1)=0.5

C=yl 61 +0.5=1.0

Example 3

As a last illustration, VI equivalence is
examined in the context of false color
display of digital spectral data. Figures
5(a) and 5(b) show two false color images
produced from two channels of multi-
spectral data. The color assignments in
Fig. 5(a) are made using a ratio of the
two channels; the intervals associated with
the different colors are indicated in the
attached scale. The color assignments in
Fig. 5(b) are made using the normalized
difference of the same two channels; as
before, the intervals associated with the
different colors are indicated in the at-
tached scale.

Clearly, the same information is not
displayed in both images. One might ask
the question: Which index is superior for
displaying this type of data? Neitherl This
can be reasoned as follows. Using the
relationships developed in Example 1, the
same color assignments can be made in
Fig. 5(a) using the normalized difference.
The interval divisions associated with the

B=0.5.

EQUIVALENCE OF SPECTRAL VEGETATION INDICES

Example 2

B
16DCT B1NDU 17NOV B3DEC 19DEC 81JAN 2BJAN BSFEB 21FEB

DATE
FIGURE 4. The hypothetical alarm model shows that no matter which VI is used
exactly the same decision wiU be made. This iUustrates that VI's can be equivalent
for decision making and not have the same graph .
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c = VABS(B) +0.5 = 1.
Applying the hypothetical alarm model

to spectral data taken in 1980'-81 over a
winter wheat field in Wilbarger County,
Texas, one sees that precisely the same
action is taken regardless of the decision
rule used (Fig. 4). The bell rang from 17
November through 10 January.

1

This example illustrates the utility of VI
equivalence in the context of alarm mod-
els. Suppose we take as our decision rule:

•Sound a "warning bell" if ND7 is
above

Using the relationships developed in Ex-
ample 1, it is easy to see that equivalent
decision rules based on R75 and TVI7
are:

•Sound a "warning bell" if R75 is above

A = (1+ B)/(I- B) = 3.0.
•Sound a "warning bell" if TVI7 is

above

f
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TABLE I Interval Divisiol' for Producing the False Color Image.

INTERVAL DIVISIONS

USING

Itulo

6.0
5.4
4.h
4.2
:3.6
.3.0
2.4
Ih
12
06
00

FIG .')(.'\)

llSING

NORMALIZED

DlfFEIIENCE

0.h6
O.6fl
066
062
0.57
0 ..56
0.4]
029
O.Ofl

n 02,5

- 100

FIG .,)(B)

USING

NORMALIZED

DIFFERENCE

O.h
0.7
0.6

05
0.4
0:3
0.2

0.1
0.0

- 0.1
-- 02

USING

RATIO

flOO
5.67
4.00

3.00
2.:33
Ih6
1.')0
122
1.00
OH2
0.67

.'\ssuming the rat io. tlw
corresponding normalized

difference is
ND = ratio" I

ratio + 1

normalized difference are given in col-
umn 2 of Table 1. Similarly the color
assignments in Fig. 5(b) can be made
using the ratio and the interval division
given in column 4 of Table 1. Thus, it is
not a question of which index is superior
or more sensitive. It is how the interval
divisions are chosen. The authors are in-
debted to Dr. Ray Jackson (USDA/ ARS,
Phoenix, Alizona) and Mr. John Millard
(Ames Research Center, Moffett Field,
California) for the color imagery used in
this example.

Summary and Conclusions

Since the launch of Landsat 1 in 1972,
investigators have derived numerous for-
mulae for the reduction of multispectral
scanner measurements to a single value
for predicting and assessing vegetation
characteristics such as species, leaf area,
stress, and biomass. Part I of this paper
summarized many of these formulae and

Assuming the normalized
difference. the cOITe-

sponding ratio is
1-. ND

ratio = --1-- ND

the empiIical relationships among them.
Most formulae fall into one of two basic
categOlies: those that use ratios or those
that use differences to exploit the spectral
characteristics of soil and vegetation. Part
II of this paper developed the idea of two
vegetation indices being equivalent: two
indices were taken to be equivalent, if the
decision made on the basis of one index
could have equally well been made on the
basis of the other index. The significance
of this idea was studied by example in
several contexts, and it was shown that
for all practical purposes several widely
used indices are equivalent.

Appendix. Modern Function Notation

Almost as basic to modern mathematics
as the concept of a set is the concept of a
function. If A and B are sets, a function f
from A into B is a rule which associates
with each element x of A an element f( x)
of B. If f is a function from A to B, one

:1
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writes f: A ~ B. If x E A, then f(x) is
called the value of fat x. Often functions
are thought of as transforms or maps from
one set into another. In today's terminol-
ogy the terms "transformation," "map-
ping," and "operator" are synonomous
with function. If f: A ~ B and x E A,
then one says that f maps x to f( x). An
example illustrate these concepts. Let A
be any nonempty set. The function f:
A ~ A defined by f(a) = a for all a E A
is called the identity function and is de-
noted iA'

If f: A ~ B is a function, the set A is
called the domain of f and the set B is
called the range of f. A function is de-
fined by specifying its value for each
element belonging to its domain. Two
functions f and g from A to B are said to
be equal if f(x) = g(x) for all x E A.

Suppose that g: A -? Band f: B ~ C
are functions. If x E A, then we may
define a function from A into C by first
mapping x to f( x) and then mapping
f( x) to f( g( x»). This function is called the
composite of f and g and is denoted by
fog. According to the above definitions

(fo g)x = f(g(x»).

Let f: A ~ B be a function. Then f is
said to be one-to-one if, f( x) = f( y) im-
plies x = y. For example, if f: R ~ R is
the function f( x) = 5 x + 3, then f is one-
to-one, because 5 x + 3 = 5 y +3 implies
that x = y. The function g(x) = x2 is not
one-to-one, since g(3) = g( - 3).

A function f: A -? B is said to be onto
if, for every y E B, there exists an x E A
such that f(x) = y. For example, f(x) =
5x + 3 is onto, since for every y E R one
has f((y - 3)/5) = y. However, g(x) = x2

is not onto, since there does not exist a
real number x such that f( x) = - 1.

C. R. PERRY, JR. AND L. F. LAUTENSCHLAGER

If f: A -? B is one-to-one and onto, then
for every b E B, there is exactly one a E A
such that f( a) = b. Therefore, one may
define the function r 1: B ~ A by r l( b )
= a. The function r 1 is called the in-
verse of f. Clearly, one has

and

If f: A ~ Band C is a subset of B, the
set La E A If( a) E C] is called the inverse
image of C, and is denoted by f- 1[ C].
The collection of all inverse images of the
singleton set [b], as b ranges over B,
partitions the set A into mutually diSjoint
sets. The individual members of this col-
lection are called equivalence classes. For
example, if r: R + X R + -? R is the func-
tion r( x, y) = x / y, the equivalence class
f-l[b] = [(x, y) x/V = b] is the line
emanating from the origin and having
slope b -1.
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